Aquatic Invasive Species Action Plan for Shields Lake, Washington County, Minnesota

Prepared for:
Comfort Lake/Forest Lake Watershed District
Forest Lake, Minnesota

Prepared by:
Steve McComas,
Jo Stuckert, and
Connor McComas
Blue Water Science, St. Paul, MN

March 2015
Aquatic Invasive Species Action Plan for Shields Lake, Washington County, Minnesota

Summary

Overview of aquatic invasive species that could impact Shields Lake are listed below. As of 2014, curlyleaf pondweed was the only non-native species known to be present in Shields Lake.

<table>
<thead>
<tr>
<th>Species of Interest</th>
<th>Lake Status</th>
<th>Potential for Growth in Shields Lake</th>
<th>Management Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cylindro (blue-green algae)</td>
<td>Unknown</td>
<td>High</td>
<td>Monitoring</td>
</tr>
<tr>
<td>2. Curlyleaf pondweed</td>
<td>Established</td>
<td>Mostly moderate</td>
<td>Annual delineations or surveys to check curlyleaf growth</td>
</tr>
<tr>
<td>3. Eurasian watermilfoil</td>
<td>Not present in Shields</td>
<td>Moderate to high</td>
<td>Annual surveys or delineations if detected</td>
</tr>
<tr>
<td>4. Zebra mussels</td>
<td>Not present in Shields, but present in White Bear, Washington Co</td>
<td>Low</td>
<td>Mussel monitoring devices for early detection</td>
</tr>
<tr>
<td>5. Common carp (based on MnDNR fish surveys)</td>
<td>Not present in Shields</td>
<td>Low to moderate</td>
<td>Determine where carp are spawning if they are found</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species to Watch</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowering rush</td>
<td>Present in watershed</td>
<td>Moderate</td>
<td>Annual observations or surveys</td>
</tr>
<tr>
<td>Purple loosestrife</td>
<td>Present in watershed</td>
<td>Fair</td>
<td>Annual surveys or observations</td>
</tr>
<tr>
<td>Hydrilla</td>
<td>Not present in Shields</td>
<td>Low to moderate</td>
<td>MnDNR sponsored treatments</td>
</tr>
<tr>
<td>Rusty crayfish</td>
<td>Not present in Shields</td>
<td>Fair to moderate</td>
<td>Crayfish traps for early detection</td>
</tr>
<tr>
<td>Chinese and Banded Mystery snail</td>
<td>May be present in Shields</td>
<td>Fair</td>
<td>Inform and educate</td>
</tr>
<tr>
<td>Spiny waterflea</td>
<td>Not present in Shields</td>
<td>Moderate to high</td>
<td>Inform and educate</td>
</tr>
<tr>
<td>Faucet snail</td>
<td>Not present in Shields</td>
<td>Moderate to high</td>
<td>Inform and educate</td>
</tr>
<tr>
<td>Asian carp</td>
<td>Not present in Shields</td>
<td>Low</td>
<td>Inform and educate</td>
</tr>
<tr>
<td>Snakehead</td>
<td>Not present in Shields</td>
<td>Moderate</td>
<td>Inform and educate</td>
</tr>
</tbody>
</table>

Curlyleaf Pondweed
Eurasian Watermilfoil
Zebra Mussel
An invasive blue-green algae, *Cylindrospermopsis sp*, referred to as Cylindro, is spreading around the United States since it was observed in the early 2000s. Cylindro is typically found in lakes with low Secchi disc transparencies and high phosphorus concentrations. Shields Lake currently has these characteristics but Cylindro has not been identified in Shields Lake. Cylindro is known to produce toxins that at high concentrations could be harmful to other aquatic life.

Action Plan: If lake phosphorus concentrations are reduced, conditions will not be favorable to abundant Cylindro growth. Two sources of phosphorus to Shields Lake come from watershed loading and internal phosphorus loading. A variety of factors contribute to internal phosphorus loading in lakes. Research by Jensen et al (1992) found when a total iron to total phosphorus ratio was greater than 15 to 1, phosphorus release from lake sediments was minor. That benchmark of 15:1 has been used to characterize the potential of Shields Lake sediments to release phosphorus. Results of the sediment survey for Shields Lake show 5 sediment sites (shown with green pentagons) have a high Fe:P ratio and that phosphorus release from lake sediments has the potential to be low (Figure S1). Internal loading does not appear to be a significant factor in Shields Lake.
2. Curlyleaf Pondweed

Curlyleaf pondweed is present in Shields Lake. Research has found curlyleaf is limited or enhanced based on lake sediment characteristics. Curlyleaf does best in sediments with a high pH and low iron content (McComas, unpublished).

Based on lake sediment survey results it is predicted curlyleaf will to grow in Shields Lake at mostly moderate abundances. However, some areas may produce heavy growth in some years. The pH is low enough to limit some growth, but the high organic matter in Shields Lake is optimal for curlyleaf growth.

Action Plan: Because curlyleaf pondweed is already established in Shields Lake, it is past the point of eradication. Ongoing activities will concentrate on curlyleaf management. The use of herbicides produce annual control, but long-term control (where treatments could be discontinued in the future) has not been observed (McComas et al. In press). Therefore annual treatments for curlyleaf control may have to be considered.

Based on lake sediment surveys, it is predicted curlyleaf can grow in a number of areas around Shields Lake although heavy growth will be limited in most years. These areas could be treated either with an endothall herbicide or by harvesting.
3. Eurasian Watermilfoil

Eurasian watermilfoil has not been found in Shields Lake as of 2014. Heavy milfoil growth has been correlated with high sediment nitrogen concentrations and low to moderate organic matter conditions. Shields Lake has sites with high lake sediment nitrogen conditions but also with very high organic matter conditions. The potential for future milfoil growth, based on lake sediment sampling, predicts light growth (Figure S3).

For Shields Lake, it is estimated the plants have the potential to grow down to at least 5 - 6 feet of water depth based on low Secchi transparencies, restricting milfoil growth to nearshore areas. Results of the sediment survey indicate growth would be limited by the high organic matter content.

Action Plan: Eurasian watermilfoil is not present in Shields Lake currently. Ongoing annual scouting activities are recommended. Lake sediment analysis indicates the potential for light milfoil growth over much of the lake. At the present time the low Secchi transparency may restrict growth to water depths of less than 5 or 6 feet. High organic matter content actually helps CLP grow, but would limit the abundance of EWM if it were to become established in Shields Lake.
4. Zebra Mussel

Zebra mussels have not been found in Shields Lake as of 2014. A review of water column and substrate characteristics was used to evaluate the potential for zebra mussel growth. It appears that zebra mussel growth would be limited in Shields Lake due to the high chlorophyll concentration which is indicative of summertime blue-green algae. Colonial blue-green algae are not easily filtered by zebra mussels and limit their growth. Although dissolved oxygen conditions are suitable for optimal to moderate growth down to water depths of about 5 feet and calcium concentrations are optimal for shell production, the blue-green algae would likely limit zebra mussel growth (Figure S4). A close cousin to the zebra mussel, the quagga mussel, has similar growth requirements and may be able to survive and propagate under more harsh conditions than zebra mussels. No quagga mussels have been reported in Washington County as of 2014.

Action Plan: Zebra mussels have not been found in Shields Lake as of 2014. Early detection activities are recommended through the growing season. If zebra mussels are detected, a rapid response plan includes a rapid response assessment. Because zebra mussel growth would likely be light, a rapid response treatment action is not a high priority. However, an action plan should be formulated and procedures should be outlined to prepare for future actions, if needed.

Under the right circumstances and depending on volunteer participation, costs would range from $5,000 to $50,000 if an eradication attempt was considered. Discussions with the MnDNR should be held prior to zebra mussel detection in Shields Lake to outline control activities and the need for potential permits.
5. Common Carp

Figure S5. Common carp potential spawning habitat quality. Green circle indicates low potential for carp spawning sites for streams and lakes connected to Shields Lake.

Common carp may be present in Shields Lake, but the last MnDNR fish survey from 2013 did not sample any carp. Shields Lake habitat suitability for future carp growth is low due to spawning conditions that may not be well suited for survival of young fish (Figure S5). Carp spawning success and population growth is limited when carp are confined to spawning within a lake. Usually predator fish will control the carp eggs and fry. Carp populations do best when there are shallow, off-lake spawning sites where fish predators would be low and thus allow the young carp to grow up to a size where predation is unlikely. It appears that Shields Lake does have some potential for off-lake spawning habitat but it does not appear to be favorable to successful carp spawning and this may limit the Shields Lake carp population.

Action Plan: Carp may be present in Shields Lake, but they would be low in numbers. If carp abundance increases, aquatic plant coverage would likely decrease. As of 2014, no carp management is necessary, rather monitoring should be ongoing.
Summary of Environmental Risk Assessments for Five Aquatic Invasive Species for Shields Lake, Washington County, Minnesota

Two primary factors are used to define environmental risk assessment for aquatic invasive species: 1) the likelihood of establishment and 2) the consequences if it does become established. The likelihood of introduction and establishment is based on the distance to the nearest AIS population, the activity at the public access, and the suitability of Shields Lake for supporting a new AIS population. The preceding pages outlined the growth potential for five AIS of interest. Typically if an AIS has the potential for heavy growth, the recreational and ecological consequences could be significant.

![Environmental Risk Assessment Chart](attachment:image.png)

Figure S6. Based on available information, an environmental risk assessment (ERA) chart was prepared for five aquatic invasive species of interest for Shields Lake.

Key:
- **Algae:** *Cylindrospermopsis*, a blue-green algae species, could survive in Shields Lake under existing high nutrient conditions. Its introduction may be limited, since there are few tributary inflows. Consequences would be mostly low.
- **CLP:** Curlyleaf pondweed is already in Shields Lake (establishment is 100%). Lake sediment analysis indicates curlyleaf has a moderate growth potential resulting in low to moderate consequences.
- **EWM:** Public access has light traffic, but lakes with EWM are in the vicinity. Sediments indicate a potential to support light growth, but it may be limited by low clarity.
- **ZM:** Zebra mussels are in Washington County, within 20 miles, but incoming boat access is light. If zebra mussels are introduced, they are predicted to produce mostly light growth due to food limitations.
- **Carp:** Carp are in Washington County and have likely been introduced in Shields Lake in the past. Conditions are not good for establishing an abundant carp population. If conditions were favorable, carp would probably be fairly abundant at this time. It appears spawning and recruitment conditions are not favorable.
Aquatic Invasive Species Action Plan for
Shields Lake, Washington County, Minnesota

Introduction

Shields Lake is a 30 acre lake (22 littoral acres, maximum depth is 27 feet)(source: MnDNR) in Washington County. The objective of this report was to evaluate the potential for ecological and recreational problems that might develop in Shields Lake associated with non-native aquatic invasive species and then list possible management actions. The aquatic invasive species evaluated include the following:

Species of Interest:
1. Blue-green algae (*Cylindrospermopsis sp*) (unknown status)
2. Curlyleaf pondweed (present in Shields Lake).
3. Eurasian watermilfoil (not present in Shields Lake).
4. Zebra mussel (not present in Shields Lake).
5. Common carp (not present in Shields Lake).

Species to Watch (not present in Shields Lake unless noted):
- **Plants**
 - Purple Loosestrife
 - Flowering Rush
 - Hydrilla
- **Invertebrates**
 - Rusty Crayfish
 - Chinese and Banded Mystery Snail (may be present in Shields Lake)
 - Faucet Snail
 - Quagga Mussels
- **Fish**
 - Asian carp (Bighead and Silver Carps)
 - Viral Hemorrhagic Septicemia (VHS)(fish virus)

Components that Were Evaluated for Each Species
- Status of species in lake: present or absent
- Potential for growth and colonization based on lake conditions and lake sediments
- Management options
Methods Used to Collect Information for AIS Evaluations

Water Quality: Shields Lake is located in the Comfort Lake/Forest Lake Watershed District (Figure 1). To assist in evaluating the growth potential of various AIS, water quality data were obtained from existing reports or collected in this study. Water quality data was used to evaluate growth potential of algae and zebra mussels. Aerial maps from Google Earth and ESRI were used to determine potential carp spawning sites.

Lake Sediments: Lake sediments were collected in this study to evaluate growth potential of various AIS based on sediment characteristics. In Shields Lake, 5 lake sediment samples were collected on October 30, 2014. Sediment samples were analyzed at the University of Minnesota Soil Testing and Research Analytical Laboratory. Additional information on soil testing methods is found in Appendix A. The full soil testing results are found in Appendix B. Specific parameters from the suite of parameters were used to evaluate the growth potential for algae, curlyleaf pondweed, and Eurasian watermilfoil.

Figure 1. Comfort Lake/Forest Lake Watershed District is located in Chisago and Washington Counties. Shields Lake is located within the Comfort Lake/Forest Lake Watershed District boundaries and within Washington County.
1. Blue-green Algae (*Cylindrospermopsis sp*)

Shields Lake Status: Unknown for Shields Lake.

Nearest Occurrence: Lake Nokomis, Minneapolis, MN

Potential for Bloom Conditions in Shields Lake: The potential is low, as long as the nutrient concentrations remain low.

Cylindro (*Cylindrospermopsis raciborskii*) (Figure 2) is a relatively new invasive blue-green algae found in Minnesota. Just as other blue-green algal species sometimes produce a toxic strain, some strains of cylindro may produce a toxin called cylindrospermopsin.

When Cylindro is a problem it is generally associated with eutrophic conditions. Work in Indiana correlated high densities of cylindro with shallow lakes (maximum depth of 28 feet or less), a low Secchi transparency (average 2.3 feet), and high total phosphorus concentrations averaging 81 ppb (Jones and Sauter 2005). As of 2014, in lake conditions are favorable in Shields Lake for blue-green growth including cylindro (Table 1).

![Figure 2. Cylindro is a filamentous blue-green algae.](image)

Table 1. Lake water quality impaired criteria for the North Central Hardwood Forest Ecoregion and recent water quality conditions for Shields Lake.

<table>
<thead>
<tr>
<th></th>
<th>Shallow Lake (MPCA impaired criteria for North Central Hardwood Forest Ecoregion)</th>
<th>Recent Values for Shields Lake (Jun-Sept)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secchi Disc (ft & m) (water clarity)</td>
<td><3.3 ft (1.0 m)</td>
<td>4.5 ft (1.4 m)</td>
</tr>
<tr>
<td>Total Phosphorus (fertilizer nutrient)</td>
<td>>60 ppb</td>
<td>194 ppb</td>
</tr>
<tr>
<td>Chlorophyll a (measure of algae)</td>
<td>>20 ppb</td>
<td>31.3 ppb</td>
</tr>
</tbody>
</table>

Shields Lake AIS Action Plan 3
Cylindro Growth Potential Based on Lake Sediment Nutrient Loading: Factors that will contribute to elevated lake phosphorus concentrations could lead to high cylindro concentrations. A variety of factors contribute to elevated phosphorus levels in lakes and internal loading, including phosphorus release from lake sediments, can be a significant factor. Research by Jensen et al (1992) found when a total iron to total phosphorus ratio was greater than 15 to 1, phosphorus release from lake sediments was minor. The ratio for the soil test results have been used in this report as well. That benchmark of 15:1 has been used to characterize the potential of Shields Lake sediments to release phosphorus. If the Fe:P ratio is greater than 15:1, p-release was considered to be low. If the Fe:P ratio was 7.5 to 15, p-release was considered to be moderate and if the Fe:P ratio was less than 7.5, p-release was considered to be high.

A second factor was also considered. If available phosphorus, as determined by Bray-P or Olsen-P, was 3 ppm or less, p-release was considered to be minor, regardless of the Fe:P ratio (derived from Nurnberg 1988).

Results for Shields Lake show 5 sediment sites (shown with green pentagons) have a high Fe:P ratio which is correlated to low potential phosphorus release from sediments (Table 2).

Table 2. Shields Lake sediment data for iron and phosphorus and the calculated Fe to P ratio. Samples were collected on October 30, 2014. The highest sediment phosphorus concentration of a site was used in the Fe/P ratio.

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (ft)</th>
<th>Iron (ppm)</th>
<th>Bray-P (ppm)</th>
<th>Olsen-P (ppm)</th>
<th>Fe/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH 1</td>
<td>6</td>
<td>162.2</td>
<td>2.5</td>
<td>2.8</td>
<td>58.5</td>
</tr>
<tr>
<td>SH 2</td>
<td>8</td>
<td>354.4</td>
<td>7.3</td>
<td>8.8</td>
<td>40.1</td>
</tr>
<tr>
<td>SH 3</td>
<td>7</td>
<td>397.3</td>
<td>5.1</td>
<td>8.0</td>
<td>49.9</td>
</tr>
<tr>
<td>SH 4</td>
<td>4</td>
<td>267.2</td>
<td>1.8</td>
<td>3.2</td>
<td>84.1</td>
</tr>
<tr>
<td>SH 5</td>
<td>26</td>
<td>343.9</td>
<td>0.6</td>
<td>12.1</td>
<td>28.4</td>
</tr>
</tbody>
</table>

Figure 3. The color indicates the p-release potential of phosphorus in 2014. Key: green = low potential.
Management Options for Blue-Green Algae

Scouting Activities: Very little information on algal species distribution in Washington County is available. Occasional sampling in Shields Lake on a monthly basis from June through September would be one way to evaluate the presence of cylindro as well as other algal species.

Rapid Response: A rapid response plan is not necessary, rather long-term plans to reduce phosphorus, which in turn reduce excessive algal growth, is a sound management approach.

Control Options: To reduce excessive algal growth in Shields Lake, phosphorus reduction programs would help. Best management practices in the watershed would have the greatest impact. In-lake treatments to control phosphorus release from lake sediments to reduce lake phosphorus concentrations may not be necessary at this time (Figure 4).

Figure 4. Watershed management practices such as no-till farming (left)(source: USDA - Natural Resources Conservation Service) and lake alum treatments to inactivate lake sediment phosphorus (right) are two approaches that reduce lake phosphorus concentrations.
2. Curlyleaf Pondweed (non-native aquatic plant)

Shields Lake Status: Present in Shields Lake.

Potential for Curlyleaf Pondweed Growth in Shields Lake: Mostly moderate growth potential with scattered areas of light and heavy growth potential.

Lake sediment sampling results from 2014 have been used to predict lake bottom areas that have the potential to support heavy curlyleaf pondweed plant growth. Various types of curlyleaf growth patterns are shown in Figures 5 and 6. Based on the key sediment parameters of pH, sediment bulk density, organic matter, and the Fe:Mn ratio (McComas, unpublished), the predicted growth characteristics of curlyleaf pondweed in Shields Lake are shown in Table 3 and Figure 7.

Curlyleaf pondweed growth is predicted to produce moderate growth in Shields Lake (Figure 7).

![Figure 5. Underwater views of curlyleaf pondweed. Light growth (left) and moderate growth (right).](image)

Examples of Curlyleaf Pondweed Growth Characteristics

![Light growth](image) ![Moderate growth](image) ![Heavy growth](image)

Figure 6. Light growth (left) refers to non-nuisance growth that is mostly below the surface and is not a recreational or ecological problem. Moderate growth (middle) refers to growth that is just below the water surface. Heavy growth (right) refers to nuisance matting curlyleaf pondweed. This is the kind of nuisance growth predicted by high sediment pH and a sediment bulk density less than 0.51.
Curlyleaf Pondweed Growth Potential Based on Lake Sediments: Curlyleaf pondweed is present in Shields Lake. Research has found curlyleaf is limited or enhanced based on lake sediment characteristics. Based on lake sediment characteristics, curlyleaf has the potential to produce light, moderate, or heavy growth on an annual basis.

In Shields Lake it is predicted that curlyleaf will grow at mostly moderate densities. Seasonal variability may increase the viability of curlyleaf on occasion, but results indicate a mostly non-nuisance or moderate growth.

Table 3. Shields Lake sediment data and ratings for potential growth of curlyleaf pondweed growth.

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (ft)</th>
<th>pH (su)</th>
<th>Bulk Density (g/cm^3 dry)</th>
<th>Organic Matter (%)</th>
<th>Fe:Mn Ratio</th>
<th>Potential for Curlyleaf Pondweed Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Growth</td>
<td></td>
<td><7.4</td>
<td>>1.04</td>
<td>0.1-5</td>
<td>>4.5</td>
<td>Light (green)</td>
</tr>
<tr>
<td>Moderate Growth</td>
<td>7.4 - 7.7</td>
<td>0.52 - 1.03</td>
<td>6-20</td>
<td>1.6 - 4.5</td>
<td>Moderate (yellow)</td>
<td></td>
</tr>
<tr>
<td>Heavy Growth</td>
<td>>7.7</td>
<td><0.51</td>
<td>>20</td>
<td><1.6</td>
<td>Heavy (red)</td>
<td></td>
</tr>
<tr>
<td>Shields 1</td>
<td>6</td>
<td>7.0</td>
<td>0.36</td>
<td>47.3</td>
<td>6.0</td>
<td>Moderate</td>
</tr>
<tr>
<td>SH 2</td>
<td>8</td>
<td>6.7</td>
<td>0.61</td>
<td>43.2</td>
<td>2.2</td>
<td>Moderate</td>
</tr>
<tr>
<td>SH 3</td>
<td>7</td>
<td>6.6</td>
<td>0.67</td>
<td>46.6</td>
<td>2.5</td>
<td>Moderate</td>
</tr>
<tr>
<td>SH 4</td>
<td>4</td>
<td>6.7</td>
<td>0.53</td>
<td>71.8</td>
<td>1.6</td>
<td>Moderate</td>
</tr>
<tr>
<td>SH 5</td>
<td>26</td>
<td>7.1</td>
<td>0.51</td>
<td>42.2</td>
<td>4.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. The color indicates the potential growth of curlyleaf pondweed. Key: yellow = moderate growth.
Management Options for Curlyleaf Pondweed

Scouting Activities: Annual scouting activities can be used to delineate areas where curlyleaf pondweed (CLP) treatment is considered. Sediment characteristics, already collected, indicate there is a potential for mostly moderate growth of CLP in Shields Lake. Scouting should be concentrated in areas that are conducive to heavy growth. If a delineation occurs it is recommended that all aquatic plants (including the natives) should be recorded within a delineated area containing curlyleaf pondweed. GPS mapping should be used to outline a treatment area. Areas of light growth do not need to be treated whereas areas of moderate to heavy growth are candidates for treatment.

Rapid Response: Unnecessary, curlyleaf is already present.

Control Options: The recommended treatment option at this time is the use of an endothall herbicide. Cost of herbicide applications range from about $300 to $500 per acre. Not all curlyleaf areas have to be treated. The areas to consider are areas with moderate to heavy growth. Curlyleaf will continue to grow in Shields Lake even in years after treatment. Two common treatment methods are shown below. In the future, harvesting or cutting could be incorporated into a management program.

Figure 8. Five stems of curlyleaf pondweed are shown on a rakehead sampler in a delineation survey in May. By the end of June this early season density could produce heavy growth.

Herbicide applications
Mechanical harvesters
3. Eurasian Watermilfoil (non-native aquatic plant)

Shields Lake Status: Not found in Shields Lake.

Nearest Occurrence: Bone Lake, Washington County

Potential for Eurasian Watermilfoil Growth in Shields Lake: Mostly light potential.

Lake sediment sampling results from 2014 have been used to predict lake areas that have the potential to support heavy Eurasian watermilfoil growth. Examples of milfoil growth characteristics are shown in Figures 9 and 10. Based on the key sediment parameters of NH₄ and organic matter (McComas, unpublished), a table and map were prepared that predict the type of growth that could be expected in the future if milfoil becomes established in Shields Lake (Table 4 and Figure 11).

In Shields Lake a majority of the sediment sites had high nitrogen but had very high organic matter content. EWM generally does not produce heavy growth. Therefore, these areas are predicted to have the potential to produce light growth of milfoil on an annual basis.

Figure 9. Underwater views of Eurasian watermilfoil.

Examples of Eurasian Watermilfoil Growth Characteristics

Figure 10. Light growth (left) refers to non-nuisance growth that is mostly below the surface and is not a recreational or ecological problem. Heavy growth (right) refers to nuisance matting Eurasian watermilfoil. This is the kind of nuisance growth predicted by high sediment nitrogen values and a sediment organic matter content less than 20%.
Eurasian Watermilfoil (EWM) Growth Potential Based on Lake Sediments: Lake sediment sampling results from 2014 have been used to predict lake bottom areas that have the potential to support heavy EWM growth. Eurasian watermilfoil has not been observed in Shields Lake as of June 2014. The potential for milfoil growth, based on lake sediment sampling, would be mostly light growth (Figure 11). Heavy milfoil growth has been correlated with high sediment nitrogen condition and Shields Lake has high nitrogen conditions, but the high organic matter content could be limiting.

For Shields Lake, it is estimated the plants have the potential to grow down to about 5 to 6 feet of water depth based on existing water clarity conditions and that could limit EWM distribution.

Table 4. Shields Lake sediment data and ratings for potential growth of Eurasian watermilfoil.

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (ft)</th>
<th>NH$_4$ Conc (ppm)</th>
<th>Organic Matter (%)</th>
<th>Potential for Eurasian Watermilfoil Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Growth</td>
<td><4</td>
<td><0.5 and >20</td>
<td>Light (green)</td>
<td></td>
</tr>
<tr>
<td>Moderate Growth</td>
<td>4 - 10</td>
<td>0.6 - 2 and 18 - 20</td>
<td>Moderate (yellow)</td>
<td></td>
</tr>
<tr>
<td>Heavy Growth</td>
<td>>10</td>
<td>3 - 17</td>
<td>Heavy (red)</td>
<td></td>
</tr>
<tr>
<td>Shields 1</td>
<td>6</td>
<td>13.5</td>
<td>47.3</td>
<td>Light</td>
</tr>
<tr>
<td>SH 2</td>
<td>8</td>
<td>108.6</td>
<td>43.2</td>
<td>Light</td>
</tr>
<tr>
<td>SH 3</td>
<td>7</td>
<td>144.5</td>
<td>46.6</td>
<td>Light</td>
</tr>
<tr>
<td>SH 4</td>
<td>4</td>
<td>26.7</td>
<td>71.8</td>
<td>Light</td>
</tr>
<tr>
<td>SH 5</td>
<td>26</td>
<td>49.5</td>
<td>42.2</td>
<td>Light</td>
</tr>
</tbody>
</table>

Figure 11. The color indicates the potential growth of Eurasian watermilfoil. Key: green = light growth.
Management Options for Eurasian Watermilfoil

Scouting Activities: When observers are on the lake they could be looking for any sign of milfoil growth. This scouting activity can occur at the time of curlyleaf scouting in May and June, but additional monitoring on the lake through the summer sampling season presents additional opportunities for a discovery.

Rapid Response Assessment: When EWM is first spotted, a rapid response assessment should be conducted. This involves monitoring the nearshore lake perimeter and looking for additional EWM occurrences. Any EWM observations should be marked on a map using GPS coordinates.

Rapid Response Action: A rapid response action will likely be limited. The probability of eradicating EWM through a rapid response is very low. The public access area could be treated, if EWM is present, to minimize possible transport to other lakes. Otherwise future control options should be considered.

Control Options: Even though Eurasian watermilfoil is not established in Shields Lake, eradication of Eurasian watermilfoil is not likely to be feasible when it is first observed. Lake sediment analyses indicate the potential for mostly light growth. However poor water clarity conditions may limit heavy growth of Eurasian watermilfoil or it’s hybrid in Shields Lake to water depths of 6 feet or less.

If treatment is to be conducted, two treatment options include herbicides and harvesting. Herbicide applications would be the preferred initial option for areas greater than 1 acre.

Herbicide Applications would use a 2,4-D herbicide

Mechanical harvesting
4. Zebra Mussels (invertebrate)

Shields Lake Status: Not currently found in Shields Lake as of November 2014.

Nearest Occurrence: White Bear Lake, Washington County, Minnesota.

Potential for Colonization in Shields Lake: Low.

The life cycle of zebra mussels is shown in Figure 12. Zebra mussels can change the water quality in a lake. A dense population filters large volumes of lake water and zebra mussels use the filtered algae for food. Eventually the build-up of excreted fecal material will fertilize the lake bottom and in some cases, generate nuisance growth of filamentous algae. However, zebra mussels do not take over every lake. Factors can limit their growth and three types of growth conditions are shown in Figure 13. A chart of water column parameters indicates a broad range of potential growth for zebra mussels in Shields Lake (Table 5). Although zebra mussels prefer hard substrates for optimal growth, they will grow together forming clumps on sand and silt bottoms. Shields Lake has extensive areas of silty and mucky sediments that would support moderate zebra mussel colonization (Figure 13). However, blue-green algal dominance would likely restrict zebra mussels to light growth.

![Figure 12: Zebra mussel life stages](image)

Shields Lake AIS Action Plan 12
Zebra Mussels have not been found in Shields Lake as of 2014. A review of water column characteristics for Shields Lake was compared to characteristics suited for zebra mussels. It appears that zebra mussels would be food limited in Shields Lake due to the excessive concentration of blue-green algae which are not easily ingested by zebra mussels (Table 5).

Table 5. Water column zebra mussel suitability criteria and Shields Lake water column conditions.

<table>
<thead>
<tr>
<th>Shell Formation Factors</th>
<th>Little Potential for Adult Survival</th>
<th>Little Potential for Larval Development</th>
<th>Moderate (survivable, but will not flourish)</th>
<th>High (favorable for optimal growth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg/l)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>45.4 (Oct. 30, 2014)</td>
<td>8 - 15</td>
</tr>
<tr>
<td>pH</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>7.9 (Oct. 30, 2014)</td>
<td><9.5 - 7.0 or 9.5 - 9.0</td>
</tr>
<tr>
<td>Alkalinity* (as mg CaCO₃/l)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>147 (Oct. 30, 2014)</td>
<td><3 - 7.8 or 7.8 - 9.0 or 30 - 100</td>
</tr>
<tr>
<td>Conductivity* (umhos)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>380 (Oct. 30, 2014)</td>
<td><30 - 60</td>
</tr>
<tr>
<td>Food Factors</td>
<td></td>
<td></td>
<td></td>
<td>Shield Lake: 1.4 (0.8 - 2.1)</td>
</tr>
<tr>
<td>Chlorophyll a (ug/l)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>31.3 (13 - 70)</td>
<td><2.5 or >25 2.0 - 2.5 or 20 - 25 8 - 20 2.5 - 8</td>
</tr>
<tr>
<td>Secchi depth (m) (June-Sept)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>1.4 (0.8 - 2.1)</td>
<td><1 or >8 1 - 2 or 6 - 8 4 - 6 2 - 4</td>
</tr>
<tr>
<td>Total phosphorus (ug/l)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>194 (141 - 291)</td>
<td><5 or >50 5 - 10 or 35 - 50 10 - 25 25 - 35</td>
</tr>
<tr>
<td>Substrate Factors (Dissolved oxygen and sediment composition)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen (mg/l)</td>
<td>Mackie and Claudi 2010</td>
<td>Shields Lake</td>
<td>>5 ft 3 - 5 ft 0 - 3 ft --</td>
<td><3 mg/l 3 - 7 mg/l 7 - 8 mg/l >8 mg/l</td>
</tr>
<tr>
<td>Bottom substrate</td>
<td>Shields Lake</td>
<td>60%</td>
<td>38%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>soft muck with no hard objects</td>
<td>muck, silt, sand</td>
<td>rock or wood</td>
</tr>
</tbody>
</table>
Zebra Mussel Growth Potential Based on Water Column and Substrate Conditions: Two broad categories combine to produce growing conditions in lakes for zebra mussels. The two categories are water column conditions and lake bottom (also referred to as substrate) conditions. Water column conditions were summarized in Table 5 and indicate, based on chlorophyll data, blue-green algae could limit zebra mussel growth. Substrate conditions were also inspected at 14 sites where lake sediments were collected. The sediments were dominated by muck and silty-sand conditions. Zebra mussels will grow on these bottom sediments, but it is not the optimal substrate. A hard substrate of rocks and boulders is the optimal substrate and rocky areas in Shields Lake are sparse. A map that combines the growth potential of water column and substrate characteristics is shown in Figure 14. It appears dissolved oxygen may limit zebra mussel growth at depths deeper than 5 feet. Zebra mussels will grow on each other in clumps (Figure 15) and begin to become commonly observed two to four years after first being discovered.

Figure 14. Key for potential growth: Green = light growth and blue = no growth.

Figure 15. Distinctive zebra mussel growth pattern found in sandy and silty sediments. Zebra mussels will grow on each other and form clumps of zebra mussels.
Management Options for Zebra Mussels

Early Detection: The zebra mussel is an aquatic invasive species that could be scouted in Shields Lake. An active scouting program consists of volunteers using a plate sampler, pvc pipe, or ceramic tiles hung from docks to monitor the appearance of juveniles. Samplers should be checked monthly over the summer months. Also docks and boats lifts should be inspected as they are removed at the end of each summer.

Figure 16. A zebra mussel plate sampler can be made from pvc materials. Ceramic tiles also make for good monitoring surfaces as well as pvc pipes.

Rapid Response Assessment: When zebra mussels are first discovered in Shields Lake, a rapid response assessment should be conducted. Because search time will likely be limited, high quality target areas should be searched first. High quality areas include public access ramps and rocky shores. For Shields Lake, a minimum of 20 search hours would be appropriate.

Rapid Response Action: One approach for eradicating an early zebra mussel introduction is to surround the area of all known zebra mussels with a floating silt curtain and treat within the site with a copper sulfate compound or potassium chloride. Special permits from the MnDNR would be needed for efforts like these. An intense assessment is necessary in order to locate all zebra mussel colonies in a lake if an eradication attempt is planned. It should be noted that there has been only one documented eradication of zebra mussels from a lake once they were discovered. The cost for an eradication attempt in Shields Lake could cost up to $30,000.

Control Options: Because it takes male and female gametes combining to make trochophore (larvae) which turn into veligers and then into adults (Figure 12), it takes a critical number of mussels to establish a thriving colony. However efforts to control the mussels from reaching a threshold number have not been effective. Therefore zebra mussels will likely colonize around Shields Lake, but at predicted low densities due to a limiting food source because blue-green algae dominate.

Use of small-scale controls that pick-up and remove zebra mussel clumps from the lake bottom could be considered. Modified clam rakes are an example of a small-scale zebra mussel removal tool that would be appropriate for a swimming beach or a boat landing area (Figure 17).

Figure 17. Small scale control devices maybe considered for removing zebra mussels in a clump form from swimming areas or sandy spawning sites.
5. Common Carp (fish)

Shields Lake Status: Not found in Shields Lake (based on MnDNR fish surveys).

Potential for Excessive Abundance in Shields Lake: Low to moderate.

Under the right conditions, common carp can become abundant in lakes and produce poor water quality. Three factors that influence carp population are shown in Figure 18. Common carp were not sampled in the last survey in Shields Lake, based on the MnDNR fish survey from 2013 (Table 6). Shields Lake habitat suitability for future growth is low to moderate due to spawning conditions that may not be well suited for survival of young fish (Figure 19). Since the 2013 survey, carp abundance has been low, probably due to limited immigration and poor recruitment of new carp.

Figure 18. Three factors contribute to carp population dynamics. When carp populations are at a low density in lakes, immigration and recruitment generally limit populations.
Table 6. Fish sampled in the Shields Lake 2013 MnDNR fish survey.

<table>
<thead>
<tr>
<th>Species</th>
<th>Gear Used</th>
<th>Number of Fish per Net</th>
<th>Average Fish Weight (lbs)</th>
<th>Normal Range (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Caught</td>
<td>Normal Range</td>
<td></td>
</tr>
<tr>
<td>Black Bullhead</td>
<td>Gill net</td>
<td>0.5</td>
<td>7.7 - 104.7</td>
<td>1.01</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>Trap net</td>
<td>8</td>
<td>2.1 - 24.1</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Gill net</td>
<td>8</td>
<td>1.7 - 17.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Bluegill</td>
<td>Trap net</td>
<td>34.33</td>
<td>3.5 - 57.1</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Gill net</td>
<td>13.5</td>
<td>N/A</td>
<td>0.24</td>
</tr>
<tr>
<td>Bowfin (dogfish)</td>
<td>Gill net</td>
<td>1.5</td>
<td>0.3 - 1.3</td>
<td>4.02</td>
</tr>
<tr>
<td>Golden Shiner</td>
<td>Trap net</td>
<td>0.17</td>
<td>0.3 - 1.6</td>
<td>0.09</td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>Trap net</td>
<td>0.17</td>
<td>0.2 - 0.8</td>
<td>0.94</td>
</tr>
<tr>
<td>Northern Pike</td>
<td>Trap net</td>
<td>0.67</td>
<td>N/A</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Gill net</td>
<td>3</td>
<td>2.0 - 10.8</td>
<td>3.43</td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td>Trap net</td>
<td>0.33</td>
<td>0.7 - 6.5</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Normal Ranges represent typical catches for lakes with similar physical and chemical characteristics.

Figure 19. Common carp potential spawning habitat quality. Green circle indicates low potential for carp spawning sites for streams and lakes connected to Shields Lake.
Management Options for Common Carp

Early Detection: Carp may be present in Shields Lake, but not excessive. If carp abundance increases, water clarity would likely decrease along with aquatic plant coverage. At this time, no carp management is necessary, rather, water quality and aquatic plant monitoring should be ongoing.

Rapid Response: Unnecessary, rather, use MnDNR fish surveys to track carp numbers.

Control Options: If controlling carp was necessary, there are three areas to address to implement a successful program. The three areas to address are 1) Immigration, 2) Recruitment, and 3) Mortality (Figure 20). Currently, there is no known carp immigration from other systems. Therefore the recruitment and mortality areas would be emphasized if control was needed. The recruitment category centers around the spawning habitat that is found in areas outside of the lake but connected by small streams. The main connection to Shields Lake is from Forest Lake, which is not a large contributor to carp immigration/recruitment. The third area, mortality, could be implemented by using commercial fishermen if necessary.

1. Immigration (Low in Shields Lake)
2. Recruitment (Low with some possible wetland spawning that could be a factor)
3. Mortality (Only necessary if carp become too abundant)

Figure 20. Three factors impacting carp population dynamics.
Other Non-native Species to Consider

Flowering Rush (aquatic plant)

Shields Lake Status: Currently not in Shields Lake

Potential for Colonization in Shields Lake: High. Flowering rush is in Forest Lake which is only 0.8 miles upstream of Shields Lake. Flowering rush will spread slowly unless it is disturbed.

Background Information:
- Flowering rush is actively expanding in some parts of the country. It has spread from a limited area around the Great Lakes and the St. Lawrence river to sporadic appearances in the northern U.S. and southern Canada.
- It competes with native shoreland vegetation.
- It is a Eurasian plant that is sold commercially for use in garden pools. It is now illegal to buy, sell or possess the plant.
- There is documentation from a site in Idaho, between 1956 and 1973, where flowering rush appeared to be out-competing willows and cattails.
- Flowering rush is on the DNR Prohibited invasive species list in Minnesota.

Figure 21. [left] Flowering rush plant and [right] flowering rush flowerhead.
Management Options for Flowering Rush
Flowering rush is a perennial aquatic herbaceous plant. It grows 1-4' high on an erect stem along shores in shallow water. In deeper water it grows submerged without producing flowers. Flowering rush is very difficult to identify when not in flower. It closely resembles many native shoreland plants, such as the common bulrush.

Populations in the eastern U.S. produce seeds. Only one Minnesota population (Forest Lake, Washington County) produces viable seeds. Flowering rush reproduces by vegetative spread from buoyant rhizome fragments which may facilitate long distance disposal. Both seeds and bulb-lets are dispersed by water current.

Control Options

Mechanical: Cut below the water surface several times per summer and remove cut parts from water. This will help control spreading. Hand dig isolated plants with care, root fragments can spread and sprout

Chemical: Application of the herbicide diquat (trade name Reward). Preliminary testing indicates that a mid-summer application during calm wind conditions may be most effective.
Purple Loosestrife (aquatic and terrestrial plant)

Shields Lake Status: Purple loosestrife has not been seen around the Shields Lake shoreline in 2014.

Potential for Nuisance Colonization in Shields Lake: Moderate.

Purple loosestrife can colonize a wide range of soil conditions. Because of it’s high seed production it has a high potential to spread. It has moderate potential to produce nuisance growth conditions on individual lake lots because residents can control small infestations. It has a higher potential to produce moderate to heavy growth in undeveloped areas around Shields Lake.

Purple Loosestrife in Shields Lake: In 2014, Purple Loosestrife was not found in Shields Lake. Purple loosestrife is able to establish and multiply rapidly (Figure 22). If it is found in or around Shields Lake, its recommended that the lake association consider removal of the few individual plants before it can establish a foothold.

Figure 22. [left] Purple loosestrife flowerhead and a purple loosestrife plant [right].

Source: MnDNR
Management Options for Purple Loosestrife

Scouting Activities: Using lake maps lake observers should make notes of where shoreland purple loosestrife plants are observed. The next step would be to notify lake residents that purple loosestrife is present on their property and that removal is encouraged.

Control Options: Information and education materials are abundant from the MnDNR and other sources that describe how to control purple loosestrife found in small or large patches. For small area control, like what would be found along a shoreline area, hand pulling or treatment with a herbicide such as Rodeo is recommended. Rodeo is a broad spectrum herbicide and will kill all plants it comes in contact with. Therefore applications should target individual plants. If chemical treatment occurs within the ordinary high water mark on Shields Lake, a MnDNR aquatic nuisance control permit may be needed. There is no charge.

For large-scale control efforts encompassing an acre or more, biological control using flower-eating weevils and leaf-eating beetles could be considered. The MnDNR at the Brainerd office has information on the steps needed to implement a control program using weevils or beetles.
Hydrilla (aquatic plant)

Shields Lake Status: Not present in Shields Lake (or in Minnesota) as of 2014.

Nearest occurrence: Arkansas to the south and Maryland to the east. Hydrilla was reported in a pond in Wisconsin and a lake in Indiana. Both infestations were considered to be eradicated.

Potential for Nuisance Colonization in Shields Lake: Low to moderate.

Hydrilla is an aquatic plant in the same family as Elodea, a native aquatic plant. Based on the ecology of hydrilla, studies have found it could survive in Minnesota. In the right settings hydrilla has the potential to produce more significant nuisance growth then curlyleaf pondweed or Eurasian watermilfoil. However, the correlation of hydrilla growth characteristics to sediment characteristics is not as well established compared to what is known for curlyleaf pondweed and Eurasian watermilfoil so it is difficult to predict what it would do in Shields Lake.

Management Options for Hydrilla

Scouting Activities: The picture of hydrilla should be copied and laminated and taken along with observers when they are scouting for curlyleaf pondweed and Eurasian watermilfoil. Any suspicious looking plant should be bagged and brought into the MnDNR for an identification confirmation. The probability is low that the first sighting of hydrilla in Minnesota would occur in Shields Lake, but observers should be aware of the possibility.

Control Options: If hydrilla was confirmed in Shields Lake, the MnDNR would more than likely handle the initial control or eradication tasks. Because hydrilla has the potential to be worse than curlyleaf pondweed or milfoil in the State of Minnesota, aggressive eradication efforts should be taken. Herbicides would be used immediately with follow-up inspections and treatments continuing for a year or more.
Rusty Crayfish (invertebrate)

Shields Lake Status: Not presently found in Shields Lake as of 2014.

Nearest Occurrence: They are found in Cass County in Leech Lake as well as several other lakes. Rusty crayfish may be in Washington County, but not reported.

Potential for Nuisance Colonization in Shields Lake: Low to moderate.

Rusty crayfish are regional non-native species. They are native to the Ohio River drainage, but once they get into a new area, rusty crayfish population controls are not in place and their population can increase dramatically. They feed heavily on vegetation and can devastate aquatic plant beds. If rusty crayfish invade Shields Lake they could reduce the aquatic plants found in the bays. Rusty crayfish would have minimal effect in the main body of Shields Lake since submerged aquatic plants are rare there.

Management Options for Rusty Crayfish

Scouting Activities: Over the course of the summer, modified minnow traps can be set to check for the presence of rusty crayfish. Several traps should be set around the Shields Lake and checked weekly.

Figure 24. [top] Rusty crayfish in breeding colors (Plum Lake, Wisconsin). They can be identified by a reddish dot on their carapace (side of their body). Native crayfish do not have this marking. [bottom] Rusty crayfish graze down aquatic plant beds and eventually eliminate them.
Rusty crayfish traps are basically standard minnows trap with a slightly enlarged opening to allow crayfish entry. It is often baited with fish parts. A goal for Shields Lake is to deploy 5 to 10 rusty crayfish traps and monitor them over the summer for the presence of rusty crayfish, although any native crayfish appearances should be noted as well.

Control Options: Once in a lake, rusty crayfish are difficult to get under control and even more difficult to eradicate. Control efforts are two-pronged. Lake groups implement a trapping program to remove large crayfish and then rely on fish predation to control the smaller crayfish. Crayfish trapping would be concentrated in the bays that have aquatic plants. A total of 30 to 50 traps would be set in an initial control effort. If crayfish abundance was high, trapping would probably occur for 5 to 10 years. If crayfish abundance is low, trapping could be discontinued after a year or two and natural fish predation would be the main control.

Shields Lake has several predator fish species that would prey on rusty crayfish. The fish species are dogfish (low numbers), largemouth bass (low numbers), walleye (low numbers), and yellow perch (low numbers). Because rusty crayfish are more aggressive defenders than native crayfish, it takes several years for the predator fish to “learn” how to capture rusty crayfish. Once this behavior is learned, it seems fish could be a long-term control.

![Figure 25. Examples of three types of rusty crayfish traps. The trap on the right is a modified minnow trap.](image1)

![Figure 26. Big Bearskin Lake, Oneida County, Wisconsin has an active rusty crayfish control program. Volunteers run the rusty crayfish traps. Crayfish are collected and brought to a central site for sorting. Small crayfish are taken into the woods for bear and raccoon food and the large crayfish are taken to a restaurant in Green Bay.](image2)
Other Molluscs

Quagga Mussel: The Quagga mussel can inhabit both hard and soft substrates, including sand and mud, and can colonize to depths with lower dissolved oxygen than zebra mussels can handle but has a hard time colonizing in shallow water. The fan shaped mussel, has several life stages and is about the size of an adult’s thumbnail. The quagga, like zebra mussels, is a filter feeder that can hurt fisheries by eating the zooplankton that native fish need to survive. It has also been noted to accumulate pollutants and pass them up the food chain.

Chinese and Banded Mystery Snail (CMS), (BMS): A larger olive colored snail species, CMS and BMS can form dense aggregations. CMS can transmit human intestinal flukes, not documented in the US. Also a carrier of trematode parasites found in native mussels. CMS occur in over 80 waters and BMS are present in about 50 waters. The name “mystery” snail comes from their odd reproduction, where offspring appear, suddenly, fully developed. After a fourth year of reproduction, the snails die and the shells wash to shore. The snail was introduced as an aquarium organism that may have been dumped into a water body.

New Zealand Mudsnail: A small snail introduced with fish stocking and ballast waters in the 1980’s. They reproduce asexually and their numbers can reach high densities, 100,000-700,000 per m². They are typically able to outcompete native snails that are important forage for fish. Found in Lake Superior in 2001, they have been slowly spreading inland since. The New Zealand mudsnail can attach to gear placed in the water or on hard surfaces.

Faucet Snail: Introduced in the great lakes in the 1870’s the faucet snail has become fairly well established in Minnesota especially along the Mississippi River corridor. The snail acts as an intermediate host for 3 different hosts that can be fatal to ducks and coots, causing internal hemorrhaging and lesions. The parasites have a complex life cycle, requiring 2 intermediate hosts.
Asian Carp

Shields Lake Status: Not present in Shields Lake as of 2014.

Nearest occurrence: St. Croix and Mississippi Rivers eDNA found. Live fish caught March 2012 on the Mississippi River.

Potential for Nuisance Colonization in Shields Lake: Low.

Asian carp are filter feeders that can consume large amounts of plankton. They are voracious feeders, reaching over a hundred pounds for bighead and 60 lbs for silver carp. The worry is they will outcompete native fishes and young of the year for the plankton, thereby reducing sport fish abundance. The river fish have been spreading up from Illinois where ideal conditions have allowed them to establish. In Minnesota, individual carps have been netted but no established populations have been found.

The spawning requirements for Asian carp require a river flow of 2 to 8 feet per second and 50 miles long. There are no rivers with that flow in the Shields Lake watershed.

Management Options for Asian Carp

Control Options: Asian carp should not be able to spawn in Shields Lake. Control options include commercial fishing or to let the carp die off naturally.

Figure 27. Bighead carp, \textit{Hypophthalmichthys nobilis}, and distribution maps (USFWS photo).

Figure 28. Silver carp, \textit{Hypophthalmichthys molitrix}, and distribution map (USFWS photo).
Snakehead

Shields Lake Status: Not present in Shields Lake as of 2014.

Nearest occurrence: East coast.

Potential for Nuisance Colonization in Shields Lake: Moderate to high.

The northern snakehead is native to eastern Asia. In the United States, it has few predators, and could disrupt ecosystems and native fish assemblages. Snakeheads are very hardy, adaptive, and can even live and travel out of water. The snakehead is extremely aggressive and territorial, typically feeding on other fish species. Adult snakeheads have been shown to have a diet overlap with largemouth bass in the Potomac River where they are established.

The northern snakehead has a range that extends north of the great lakes region.

Management Options for Snakehead

Control Options: Preventative measures will be the most effective. Once established, rotenone can be used for eradication, however all fish species will be killed. A dissolved oxygen content of less than 3 parts per million should be achieved throughout the waterbody to ensure sufficient dosage.

Figure 29. Picture of a snakehead (left) and distribution map (right). From the USGS website (Nonindigenous Aquatic Species (NAS) page).
Viral Hemorrhagic Septicemia (VHS)(fish virus)

Shields Lake Status: Not present in Shields Lake as of 2014.

Nearest occurrence: Several inland lakes in Wisconsin and all the Great Lakes.

Potential for Nuisance Colonization in Shields Lake: Moderate to high. Prevention is the key to minimize the impact of VHS. This fish virus will kill a variety of fish species, but does not eliminate the entire fish population in a lake. If it were to be introduced to Shields Lake, it has a high probability of becoming established.

Management Options for VHS

Scouting Activities: The basic strategy is to make anglers aware that they should report any fish with signs of hemorrhaging to the MnDNR. If they have caught a fish with hemorrhaging they should bring the fish to the MnDNR. If a fish kill is observed involving hemorrhaging fish don’t collect the fish, but call the MnDNR immediately.

Control Options: At the present time, there is no known way to reduce or inactivate the virus in the open water. The best approach is to remove infected fish as soon as feasible. The virus can be passed from one infected fish to another. If VHS is discovered in Shields Lake, an intensive information program should be implemented by the Washington County Environmental staff. Staffing public access landings could be considered to prevent the spread of VHS by way of livewell and bilge water transport to other lakes. Costs for these actions could be partly covered by grants.

![Figure 30. Examples of hemorrhaging in fish with the VHS virus.](image)
References

Gamble, A. 2014. Flowering rush infestation survey of the Cannon River watershed by the invasive species program. Prepared by the Minnesota Department of Natural Resources.

APPENDIX A

Methods

Lake Soil Survey: A total of 5 samples were collected from depths ranging from 4 to 26 feet. Location of sample sites is shown in Figure A1. Samples in shallow water were collected using a modified soil auger, 5.2 inches in diameter. Samples in deeper water (26 feet) were sampled using a ponar dredge. Soils were sampled to a sediment depth of 6 inches. The lake soil from the sampler was transferred to 1-gallon zip-lock bags and sent to the University of Minnesota Soil Testing and Research Analytical Laboratory.

Figure A1. Location map of the lake sediment collection sites.

Lake Soil Analysis Using Standard Soil Tests: At the lab, sediment samples were air dried at room temperature, crushed and sieved through a 2 mm mesh sieve. Sediment samples were analyzed using standard agricultural soil testing methods. Fifteen parameters were tested for each soil sample. A summary of extractants and procedures is shown in Table A1. Routine soil test results are given on a weight per volume basis.

Table A1. Soil testing extractants used by University of Minnesota Soil Testing and Research Analytical Laboratory. These are standard extractants used for routine soil tests by most Midwestern soil testing laboratories (reference: Western States Laboratory Proficiency Testing Program: Soil and Plant Analytical Methods, 1996-Version 3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Extractant</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Bray</td>
<td>0.025M HCL in 0.03M NH₄F</td>
</tr>
<tr>
<td>P-Olsen</td>
<td>0.5M NaHCO₃</td>
</tr>
<tr>
<td>NH₄-N</td>
<td>2N KCL</td>
</tr>
<tr>
<td>K, Ca, Mg</td>
<td>1N NH₄OA₃ (ammonium acetate)</td>
</tr>
<tr>
<td>Fe, Mn, Zn, Cu</td>
<td>DTPA (diethylenetriamine pentaacetic acid)</td>
</tr>
<tr>
<td>B</td>
<td>Hot water</td>
</tr>
<tr>
<td>SO₄-S</td>
<td>Ca(H₂PO₄)₂</td>
</tr>
<tr>
<td>pH</td>
<td>water</td>
</tr>
<tr>
<td>Organic matter</td>
<td>Loss on ignition at 360°C</td>
</tr>
</tbody>
</table>

Figure A2a. Soil auger used to collect lake sediments in water depths to 10 feet.

Figure A2b. Ponar dredge used to collect lake sediments in deeper water.
The Adjustment Factor for Reporting Results as Volume/Weight: There has been discussion for a long time on how to express analytical results from soil sampling. Lake sediment research results are often expressed as grams of a substance per kilogram of lake sediment, commonly referred to as a weight basis (mg/kg). However, in the terrestrial sector, to relate plant production and potential fertilizer applications to better crop yields, soil results typically are expressed as grams of a substance per cubic foot of soil, commonly referred to as a weight per volume basis. Because plants grow in a volume of soil and not a weight of soil, farmers and producers typically work with results on a weight per volume basis.

That is the approach used here for lake sediment results: they are reported on a weight per volume basis or µg/cm³.

A bulk density adjustment was applied to lake sediment results as well. For agricultural purposes, in order to standardize soil test results throughout the Midwest, a standard scoop volume of soil has been used. The standard scoop is approximately a 10-gram soil sample. Assuming an average bulk density for an agricultural soil, a standard volume of a scoop has been a quick way to prepare soils for analysis, which is convenient when a farmer is waiting for results to prepare for a fertilizer program. It is assumed a typical silt loam and clay texture soil has a bulk density of 1.18 grams per cm³. Therefore a scoop size of 8.51 cm³ has been used to generate a 10-gram sample. It is assumed a sandy soil has a bulk density of 1.25 grams per cm³ and therefore a 8.00 cm³ scoop has been used to generate a 10-gram sample. Using this type of standard weight-volume measurement, the lab can use standard volumes of extractants and results are reported in ppm which is close to µg/cm³. For all sediment results reported here, a scoop volume of 8.51 cm³ was used.

Although lake sediment bulk density has wide variations, a scoop volume of 8.51 cm³ was used for all lake sediment samples in this report. This would not necessarily produce a consistent 10-gram sample. Therefore, for our reporting, we have used adjusted weight-volume measurements and results have been adjusted based on the actual dry lake sediment bulk density. We used a standard scoop volume of 8.51 cm³, but sediment samples were weighed. Because test results are based on the premise of a 10 gram sample, if our sediment sample was less than 10 grams, then the reported concentrations were adjusted down to account for the less dense bulk density. If a scoop volume weighed greater than 10.0 grams than the reported concentrations were adjusted up. For example, if a 10-gram scoop of lake sediment weighed 4.0 grams, then the correction factor is 4.00 g / 10.00 g = 0.40. If the analytical result was 10 ppm based on 10 grams, then it should be 0.40 x 10 ppm = 4 ppm based on 4 grams. The results could be written as 4 ppm or 4 µg/cm³. Likewise, if a 10-gram scoop of lake sediment weighed 12 grams, then the correction factor is 12.00 g / 10.00 g = 1.20. If the analytical result was 10 ppm based on a 10 gram scoop, then it should be 1.20 x 10 ppm = 12 ppm based on 12 grams. The result could be written as 12 ppm or 12 µg/cm³. These are all dry weight determinations.

This adjustment factor is important for evaluating the ammonium-nitrogen raw data. There appears to be a threshold nitrogen concentration at 10 ppm. If nitrogen is greater than 10 ppm, heavy milfoil growth can occur. If the adjustment factor is not applied, light, fluffy sediments may produce a high nitrogen reading based on a weight basis, but would not support heavy milfoil growth. When the adjustment factor is applied, and if the nitrogen concentration falls below 10 ppm, light or moderate growth of milfoil is predicted rather than heavy growth.
APPENDIX B

2014 sediment data for Shields Lake. Sediments were collected on October 30, 2014

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Bulk Density (wt/8.51)</th>
<th>Bray P (ppm)</th>
<th>Olsen P (ppm)</th>
<th>NH4OAc-K (ppm)</th>
<th>LOI OM (%)</th>
<th>Water pH</th>
<th>Hot Water Boron (ppm)</th>
<th>DTPA-Fe (ppm)</th>
<th>DTPA-Mn (ppm)</th>
<th>DTPA-Zn (ppm)</th>
<th>DTPA-Cu (ppm)</th>
<th>NH4OAc-Ca (ppm)</th>
<th>NH4OAc-Mg (ppm)</th>
<th>SO2-S (ppm)</th>
<th>NH4-N (ppm)</th>
<th>Avg Scoop Wt</th>
<th>Correction Factor</th>
<th>Fe/S</th>
<th>Fe/Mn</th>
<th>Fe/P</th>
<th>check P value Olsen was used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shields 1</td>
<td>0.36</td>
<td>2.5</td>
<td>2.8</td>
<td>19</td>
<td>47.3</td>
<td>7.0</td>
<td>0.40</td>
<td>162.2</td>
<td>27.0</td>
<td>1.22</td>
<td>0.55</td>
<td>1194</td>
<td>119</td>
<td>61</td>
<td>13.5</td>
<td>3.08</td>
<td>0.31</td>
<td>2.7</td>
<td>6.0</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>SH 2</td>
<td>0.61</td>
<td>7.3</td>
<td>8.8</td>
<td>59</td>
<td>43.2</td>
<td>6.7</td>
<td>1.18</td>
<td>354.4</td>
<td>159.0</td>
<td>3.04</td>
<td>0.99</td>
<td>1975</td>
<td>264</td>
<td>111</td>
<td>108.6</td>
<td>5.20</td>
<td>0.52</td>
<td>3.2</td>
<td>2.2</td>
<td>40.1</td>
<td></td>
</tr>
<tr>
<td>SH 3</td>
<td>0.67</td>
<td>5.1</td>
<td>8.0</td>
<td>72</td>
<td>46.6</td>
<td>6.5</td>
<td>1.46</td>
<td>397.3</td>
<td>159.6</td>
<td>3.48</td>
<td>0.83</td>
<td>2368</td>
<td>305</td>
<td>200</td>
<td>144.5</td>
<td>5.68</td>
<td>0.57</td>
<td>2.0</td>
<td>2.5</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>SH 4</td>
<td>0.53</td>
<td>1.8</td>
<td>3.2</td>
<td>45</td>
<td>71.8</td>
<td>6.7</td>
<td>1.37</td>
<td>267.2</td>
<td>163.0</td>
<td>0.92</td>
<td>0.34</td>
<td>1933</td>
<td>223</td>
<td>21</td>
<td>26.7</td>
<td>4.54</td>
<td>0.45</td>
<td>12.5</td>
<td>1.6</td>
<td>84.1</td>
<td></td>
</tr>
<tr>
<td>SH 5</td>
<td>0.51</td>
<td>0.6</td>
<td>12.1</td>
<td>60</td>
<td>42.2</td>
<td>7.1</td>
<td>0.72</td>
<td>343.9</td>
<td>81.2</td>
<td>1.68</td>
<td>1.07</td>
<td>2136</td>
<td>212</td>
<td>338</td>
<td>49.5</td>
<td>4.33</td>
<td>0.43</td>
<td>1.0</td>
<td>4.2</td>
<td>28.4</td>
<td></td>
</tr>
</tbody>
</table>

REPORTED FROM THE LAB DATA SET (UNADJUSTED)

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Bray P (ppm)</th>
<th>Olsen P (ppm)</th>
<th>NH4OAc-K (ppm)</th>
<th>LOI OM (%)</th>
<th>Water pH</th>
<th>Hot Water Boron (ppm)</th>
<th>DTPA-Fe (ppm)</th>
<th>DTPA-Mn (ppm)</th>
<th>DTPA-Zn (ppm)</th>
<th>DTPA-Cu (ppm)</th>
<th>NH4OAc-Ca (ppm)</th>
<th>NH4OAc-Mg (ppm)</th>
<th>SO2-S (ppm)</th>
<th>NH4-N (ppm)</th>
<th>Avg Scoop Wt</th>
<th>Correction Factor</th>
<th>Fe/S</th>
<th>Fe/Mn</th>
<th>Fe/P</th>
<th>check P value Olsen was used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shields 1</td>
<td>8</td>
<td>9</td>
<td>61</td>
<td>47.3</td>
<td>7.0</td>
<td>1.296</td>
<td>526.14</td>
<td>87.634</td>
<td>3.953</td>
<td>1.796</td>
<td>3873</td>
<td>197</td>
<td>384.48</td>
<td>43.9</td>
<td>3.12</td>
<td>3.05</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 2</td>
<td>14</td>
<td>17</td>
<td>113</td>
<td>43.2</td>
<td>6.7</td>
<td>2.261</td>
<td>681.10</td>
<td>305.62</td>
<td>5.843</td>
<td>1.902</td>
<td>3796</td>
<td>214</td>
<td>506.67</td>
<td>208.8</td>
<td>5.22</td>
<td>5.18</td>
<td>5.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 3</td>
<td>9</td>
<td>14</td>
<td>127</td>
<td>46.6</td>
<td>6.6</td>
<td>2.563</td>
<td>699.09</td>
<td>280.85</td>
<td>6.130</td>
<td>1.452</td>
<td>4167</td>
<td>352</td>
<td>536.11</td>
<td>254.3</td>
<td>5.50</td>
<td>5.79</td>
<td>5.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 4</td>
<td>4</td>
<td>7</td>
<td>99</td>
<td>71.8</td>
<td>6.7</td>
<td>3.014</td>
<td>588.59</td>
<td>359.08</td>
<td>2.028</td>
<td>0.739</td>
<td>4257</td>
<td>47</td>
<td>491.36</td>
<td>47</td>
<td>4.46</td>
<td>4.65</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 5</td>
<td>1.5</td>
<td>28</td>
<td>139.5</td>
<td>42.2</td>
<td>7.1</td>
<td>1.662</td>
<td>794.82</td>
<td>187.59</td>
<td>3.882</td>
<td>2.476</td>
<td>4937</td>
<td>791</td>
<td>490.08</td>
<td>114.4</td>
<td>4.33</td>
<td>4.32</td>
<td>4.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curlyleaf Pondweed Growth Characteristics
(sourced: Steve McComas, Blue Water Science, unpublished)

Light Growth Conditions

- Plants rarely reach the surface.
- Navigation and recreational activities are not generally hindered.
- Stem density: 0 - 160 stems/m²
- Biomass: 0 - 50 g-dry wt/m²
- Estimated TP loading: <1.7 lbs/ac

MnDNR rake sample density equivalent for light growth conditions: 1, 2, or 3.

Moderate Growth Conditions

- Broken surface canopy conditions.
- Navigation and recreational activities may be hindered.
- Lake users may opt for control.
- Stem density: 100 - 280 stems/m²
- Biomass: 50 - 85 g-dry wt/m²
- Estimated TP loading: 2.2 - 3.8 lbs/ac

MnDNR rake sample density equivalent for moderate growth conditions: 2, 3 or sometimes, 4.

Heavy Growth Conditions

- Solid or near solid surface canopy conditions.
- Navigation and recreational activities are severely limited.
- Control is necessary for navigation and/or recreation.
- Stem density: 400+ stems/m²
- Biomass: >300 g-dry wt/m²
- Estimated TP loading: >6.7 lbs/ac

MnDNR rake sample density has a scale from 1 to 4. For certain growth conditions where plants top out at the surface, the scale has been extended: 4.5 is equivalent to a near solid surface canopy and a 5 is equivalent to a solid surface canopy. Heavy growth conditions have rake densities of 4 (early to mid-season with the potential to reach the surface), 4.5, or 5.
Eurasian Watermilfoil Growth Characteristics
(source: Steve McComas, Blue Water Science, unpublished)

Light Growth Conditions

Plants rarely reach the surface.

Navigation and recreational activities generally are not hindered.

Stem density: 0 - 40 stems/m²
Biomass: 0 - 51 g-dry wt/m²

MnDNR rake sample density equivalent for light growth conditions: 1, 2, or 3.

Moderate Growth Conditions

Broken surface canopy conditions. However, stems are usually unbranched.

Navigation and recreational activities may be hindered.

Lake users may opt for control.

Stem density: 35 - 100 stems/m²
Biomass: 30 - 90 g-dry wt/m²

MnDNR rake sample density equivalent for moderate growth conditions: 3 or 4.

Heavy Growth Conditions

Solid or near solid surface canopy conditions. Stems typically are branched near the surface.

Navigation and recreational activities are severely limited.

Control is necessary for navigation and/or recreation.

Stem density: 250+ stems/m²
Biomass: >285 g-dry wt/m²

MnDNR rake sample density has a scale from 1 to 4. For heavy growth conditions where plants top out at the surface, the scale has been extended: 4.5 is equivalent to a near solid surface canopy and a 5 is equivalent to a solid surface canopy.